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Eyelid’s Intrinsic Motion-aware Feature Learning
for Real-time Eyeblink Detection in the Wild

Wenzheng Zeng, Yang Xiao, Guilei Hu, Zhiguo Cao, Sicheng Wei, Zhiwen Fang, Joey Tianyi Zhou, and
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Abstract—Real-time eyeblink detection in the wild is a recently
emerged challenging task that suffers from dramatic variations
in face attribute, pose, illumination, camera view and distance,
etc. One key issue is to well characterize eyelid’s intrinsic
motion (i.e., approaching and departure between upper and lower
eyelid) robustly, under unconstrained conditions. Towards this, a
novel eyelid’s intrinsic motion-aware feature learning approach
is proposed. Our proposition lies in 3 folds. First, the feature
extractor is led to focus on informative eye region adaptively via
introducing visual attention in a coarse-to-fine way, to guarantee
robustness and fine-grained descriptive ability jointly. Then, 2
constraints are proposed to make feature learning be aware
of eyelid’s intrinsic motion. Particularly, one concerns the fact
that the inter-frame feature divergence within eyeblink processes
should be greater than non-eyeblink ones to better reveal eyelid’s
intrinsic motion. The other constraint minimizes the inter-frame
feature divergence of non-eyeblink samples, to suppress motion
clues due to head or camera movement, illumination change,
etc. Meanwhile, concerning the high ambiguity between eyeblink
and non-eyeblink samples, soft sample labels are acquired via
self-knowledge distillation to conduct feature learning with finer
supervision than the hard ones. The experiments verify that,
our proposition is significantly superior to the state-of-the-art
ones (i.e., advantage on F1-score over 7%) and with real-time
running efficiency. It is also of strong generalization capacity
towards constrained conditions. The source code is available at
https://github.com/wenzhengzeng/blink eyelid.

Index Terms—Eyeblink detection in the wild, eyelid’s intrinsic
motion, visual attention, self-knowledge distillation

I. INTRODUCTION

EYEBLINK detection in the wild is a recently emerged
challenging research task [1], with a wide range of
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Fig. 1: The main research idea of our eyelid’s intrinsic
motion-aware feature learning approach. We propose a

coarse-to-fine eye region discovery method to lead the feature
extractor focus on the informative fine eye region with rich

eyelid movement robustly. The constraints concerning
eyelid’s intrinsic motion awareness and non-eyeblink motion
insensitivity are proposed for a better eyelid feature learning.

We also introduce soft label supervision to alleviate the
ambiguity between eyeblink and non-eyeblink samples.

applications on drive fatigue detection [2], deception detec-
tion [3], face anti-spoofing [4], etc. Compared with eyeblink
detection under constrained indoor conditions [4]–[7] where
volunteers remain relatively still facing the camera under well-
lit conditions, eyeblink detection in the wild places a stronger
emphasis on the unconstrained nature of various practical
scenarios. For example, as shown in Fig. 2, it may suffer from
more dramatic variations in face attribute, pose, illumination,
camera view and distance, as well as motion blurring and
sample ambiguity. These actually lead to the unsatisfactory
performance of the existing state-of-the-art eyeblink detection
approaches [1], [6], [8], [9] towards “in the wild” cases.

Eyeblink can be essentially characterized by eyelid’s intrin-
sic motion (i.e., approaching and departure between the upper
and lower eyelid). However, well capturing this representative
clue under unconstrained conditions is not trivial. The existing
eyeblink detection approaches can be generally categorized
into facial landmark-based [5], [6], [10] and region-based [1],
[8], [11], [12] paradigms. The former one is good at reveal-
ing eyelid’s fine status, while suffering from the potential
landmark localization failure risk even with state-of-the-art
manners [13]–[17]. On the other hand, region-based methods

https://github.com/wenzhengzeng/blink_eyelid
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Fig. 2: The challenges towards eyeblink detection in the wild.

are generally of stronger robustness, but they still face the
non-trivial issue of setting suitable local eye region size.
That is, small region can well capture fine descriptive clues
while suffering from unexpected missing coverage on eyes due
to the unreliable landmark detection. Large region benefits
robustness, but may involve more background information
distracting for eyelid’s status description. Eye region of box
form is also not optimal for revealing eyelid’s fine motion due
to the rigidness. Last but not least, the existing approaches
generally do not well concern the specific characteristics of
eyelid’s intrinsic motion to facilitate feature extraction.

To address the issues above, an eyelid’s intrinsic motion-
aware feature learning approach for eyeblink characterization
in the wild is proposed by us. Particularly, we pay research
efforts to answer 2 essential questions for effective eyeblink
representation: (1) how to lead feature extractor to focus on
the informative fine eye region robustly? and (2) how to make
feature learning be aware of eyelid’s intrinsic motion?

For the first question, a coarse-to-fine informative eye region
discovery method is proposed via introducing visual attention
mechanism to eyeblink detection task for the first time. Par-
ticularly, during the coarse stage a large coarse eye region
is first extracted to ensure high coverage on eye. Compared
with the existing region-based counterparts [1], [11], [12], our
coarse eye region is of much larger size to better guarantee
robustness. Within the consequent fine stage, adaptive infor-
mative eye region attention is imposed to the acquired coarse
region, for extracting eyelid’s fine motion feature and resisting
background. During this, explicit constraints are designed to
help the deformable attention map focus more on the center
eye region. This can generally help to capture eyelid’s fine
motion across eye center during eyeblink.

Towards the second question, 2 constraints that concern
eyelid’s intrinsic motion awareness are proposed to guide
eyeblink feature learning. The first one concerns the fact that
the inter-frame feature divergence within eyeblink processes
should be greater than the non-eyeblink ones, due to eyelid’s
intrinsic motion when eyeblink happens. The second one
aims to resist non-eyeblink motion caused by head or camera
movement, illumination change, facial expression variation,
etc. The goal is achieved by minimizing the inter-frame
feature divergence of non-eyeblink samples, to reveal non-
eyeblink motion insensitivity. It is worth noting that, within
our proposition the generation of attention maps and eyeblink
feature learning are jointly optimized in an end-to-end learning
manner to seek the optimal performance.

Additionally, concerning the high ambiguity between eye-

blink and non-eyeblink samples, we further propose to use soft
sample labels as the supervision to conduct feature learning for
better revealing eyeblink’s fine-grained characteristics instead
of the hard ones. Particularly, the soft sample labels are self-
generated via the teacher network under a self-knowledge
distillation framework [18]. To our knowledge, we are the
first to address the sample ambiguity problem for eyeblink
detection. Overall, the main research idea of our proposition
is shown in Fig. 1.

To verify the effectiveness and efficiency of our proposition,
it is tested on one “in the wild” dataset (HUST-LEBW [1])
and one constrained dataset termed “Constrained+” built by
us via combing 4 existing constrained eyeblink datasets [4],
[5], [7], [19]. Actually, our method outperforms the state-of-
the-art eyeblink detection approaches by a large margin (i.e.,
advantage on F1-score over 7%) towards “in the wild” cases
and can also be well adapted to the constrained conditions,
with real-time running efficiency (about 41 FPS). Besides,
our model trained on Constrained+ can be directly applied to
HUST-LEBW with promising performance. This verifies the
strong generalization capacity of our proposition.

Overall, the main contributions of this paper include:
• An eyelid’s intrinsic motion-aware feature learning ap-

proach is proposed for real-time eyeblink detection in the wild.
Within it, informative eye region attention is introduced with
eye center focus constraints;
• The constraints on eyelid’s intrinsic motion awareness

and non-eyeblink motion insensitivity are proposed to guide
eyeblink feature learning;
• Self-generated soft sample label is applied to address the

ambiguous categorization problem in eyeblink detection.
The remaining of this paper is organized as follows. Sec. II

discusses the related work. Our eyeblink feature learning
method is illustrated in Sec. III. Then, the ambiguous problem
between eyeblink and non-eyeblink samples is addressed in
Sec IV with soft sample label self-generation. The implemen-
tation details are given in Sec. V. Experiments are conducted
in Sec. VI. Sec. VII concludes the whole paper.

II. RELATED WORK

Here, the related works for eyeblink detection in the wild
task on dataset, eyeblink detection approach, visual attention
and knowledge distillation will be introduced respectively.

Eyeblink detection dataset. The existing datasets (e.g.,
ZJU [4], Eyeblink8 [7], Talking Face [19], RLDD [5], and
mEBAL [8]) generally focus on constrained indoor cases.
While, some “in the wild” applications (e.g., fatigue detec-
tion [2] and deception detection [3] in unconstrained environ-
ments) have not been well concerned. To fill this gap, HUST-
LEBW [1] is recently proposed as the first “in the wild” dataset
via capturing eyeblink samples from unconstrained movies.
It suffers from large variations on human attributes, head
pose, illumination, camera view and distance, motion blurring,
and sample ambiguity, which is as in Fig. 2. These issues
make real-time eyeblink detection on it indeed challenging.
Essentially, one key challenge is to well characterize eyelid’s
intrinsic motion robustly, under unconstrained conditions.
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Fig. 3: Failure cases of the state-of-the-art facial landmark
detector [16] on HUST-LEBW dataset. The green and red

points indicate the successful and failure cases respectively.

Eyeblink detection approach. The existing methods gen-
erally fall into landmark-based [5], [6], [10], [20] and region-
based groups [1], [7], [8], [11], [12], [21], [22]. Using facial
landmarks, the landmark-based methods can extract fine de-
scriptive eyeblink features with promising performance, under
the constrained indoor conditions. However, for “in the wild”
cases, accurate landmark detection is actually not trivial even
using the state-of-the-art manners [15]–[17]. Some failure
cases on HUST-LEBW are given in Fig. 3. This leads to high
eyeblink detection failure risk as revealed in [1]. To facilitate
robustness, the region-based approaches [1], [12] generally
choose to alleviate the dependence on facial landmarks via
extracting eyeblink feature from the local rigid region around
the detected eye center. Although the boosted robustness,
region-based eyeblink features tend to sacrifice fine descriptive
clues due to the relatively large receptive field in rigid box
form. While shrinking the receptive field may increase failure
risk since the eye center cannot always be detected accurately.

Our method is region-based. We propose a coarse-to-fine
informative eye region discovery method to let the feature
extractor focus on the representative eyeblink clues while
still maintaining robustness. Meanwhile, the proposed eye-
lid’s intrinsic motion-aware feature learning further leverages
discriminative power. The deep insight is that, the feature
extractor should be sensitive to eyelid’s intrinsic motion and
insensitive to non-eyeblink motion.

Attention for visual recognition. The attention mechanism
helps the models to focus on key information. It first gen-
erates the weights of different features that represent their
importance. Based on the generated weights, the model can
reweight the features to highlight the most discriminative clues
and suppress irrelevant information. In this way, the attention
mechanism can facilitate the feature extraction quality and
improve the performance and robustness of the model. Such
an idea has been widely used in numerous visual recognition
research fields such as image classification [23]–[27], object
detection [23], [24], [27], semantic segmentation [27], action
recognition [28]–[31], etc. In this work, we propose to lead the
feature extractor to focus on informative eye region adaptively
via introducing visual attention in a coarse-to-fine way. The
generated attention adaptively focuses around the center eye
region tightly. In this way, the eyelid’s intrinsic motion on eye
can be captured effectively for eyeblink characterization.

Knowledge distillation. To facilitate the student model’s
discriminative power, the research idea of knowledge distilla-
tion [32], [33] aims to transfer the discriminative information
within the teacher model to it. The soft sample labels gener-

ated by teacher model are believed of containing privileged
information on similarity among different categories [32].
Actually, under some unconstrained conditions, eyeblink and
non-eyeblink samples are of high ambiguity that may confuse
feature learning for eyeblink characterization. To address this,
we use self-knowledge distillation [18], [34]–[36] to generate
soft sample labels as the supervision to leverage eyeblink
feature learning in the spirit of anti-ambiguity.

III. EYELID’S INTRINSIC MOTION-AWARE FEATURE
LEARNING WITH INFORMATIVE EYE REGION ATTENTION

The main technical pipeline of the proposed approach is
shown in Fig. 4. Specifically, it runs in a coarse to informative
way. Towards “in the wild” video clip, human faces and eye
centers are first detected via InsightFace [17]. Then a coarse
eye region of relatively large size is acquired around the
eye center to ensure robustness. To facilitate discriminative
power, an informative eye region attention map is generated
by a learnable attention generator, which takes the whole face
image as input and outputs the attention map that aligns with
the resolution of the input face. The portion of the generated
attention map that aligns with the previously extracted coarse
eye region will be multiplied with this coarse eye region in a
pixel-wise manner for informative eye region discovery. The
attention-weighted coarse eye region will be inputted into a
feature extractor for appearance and motion feature extraction,
followed by temporal aggregation and a final classifier for
eyeblink classification. Such a coarse-to-fine manner can let
the feature extractor focus on the representative clues while
still maintaining robustness. During training, the network
including the attention generation and the feature extraction
are end-to-end optimized by eyeblink classification loss, to
seek optimal performance. To facilitate the focusing ability
of the attention generator, eye center focus constraints are
also designed to regulate its learning procedure. In order to
make the feature extractor better aware of the intrinsic eyelid
motion and be insensitive to non-eyeblink motion, 2 targeted
constraints are imposed at feature level to facilitate feature
learning. Besides, we also utilize soft eyeblink label supervi-
sion via self-knowledge distillation, which will be introduced
in Sec. IV.

A. Coarse-to-fine Informative Eye Region Discovery

For region-based eyeblink detection approaches, how to set
local eye region of suitable size around the detected eye center
for eyeblink feature extraction is actually an essential issue.
Specifically, a larger eye region can enhance robustness but
may sacrifice discriminative power. In contrast, a smaller eye
region can help extract fine features but may suffer from
eye center localization error that leads to potential missing
coverage on eye.

Towards eyeblink detection in the wild, we propose a
coarse-to-fine informative eye region discovery approach that
can capture eye region both robustly and discriminatively, as
shown in Fig. 5. First, we argue that the local eye region
should be set loosely around the detected eye center first
to prioritize robustness, as the eye center cannot always be
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Fig. 4: The main technical pipeline of the proposed eyelid’s intrinsic motion-aware feature learning approach for eyeblink
characterization in the wild.

localized accurately under in-the-wild conditions, and directly
cropping a tight region around the inaccurate eye center may
lead to potential missing coverage on eye. Particularly, we
first employ face and facial landmark detector (e.g., Insight-
Face [17] in our implementation) to acquire the face region
and eye center position. After resizing the acquired face region
to 256 × 192, the coarse eye region is loosely set around
the eye center with a relatively large size of 100 × 100. To
show the superiority of this eye region extraction strategy,
some examples are shown in the middle row in Fig. 5 with
the comparison to the previous approach [1] on the HUST-
LEBW dataset under “in the wild” conditions. Note that we
adopt the same face and eye center detector for ours and the
compared one [1] for a fair comparison. It can be seen that
the tight eye region extraction strategy in [1] (the top row
in Fig. 5) cannot always cover eye regions robustly due to
the high dependence on the eye center detector that might be
unreliable under challenging in-the-wild scenarios. Under the
same eye center localization accuracy, our loose eye region
extraction strategy (the middle row in Fig. 5) can cover eyes
more robustly under the challenging unconstrained conditions
that correspond to the large variations in human attributes,
face pose, and illumination. Essentially, this leads to a low
failure rate towards eyeblink detection in the wild. Moreover,
the proposed informative attention generation further captures
the fine eye region with rich eyelid movement to boost the
discriminative power (the bottom row in Fig. 5). Overall,
the proposed coarse-to-fine informative eye region discovery
strategy is capable of being both robust and discriminative.
The attention generation will be illustrated as follows.

B. Informative Eye Region Attention Generation with Eye
Center Focus Constraints

As shown in the middle row in Fig. 5, although the acquired
large coarse eye region helps to ensure robustness, it still
involves much background not helpful for fine-grained eye-
blink characterization. Thus, it is indeed necessary to further
discover more fine and representative eye region for feature
learning. We propose to address this by introducing adaptive
attention for eye region discovery to better capture the eyelid’s
intrinsic motion (the bottom row in Fig. 5). Particularly, the

Small eye region 
extraction [1]

Robust

Large eye region 
extraction
Robust

Informative attention 
in large eye region
Discriminative

Ours: coarse to informative

Fig. 5: The comparison between the state-of-the-art
method [1] and our approach on eye region discovery on the
HUST-LEBW dataset. The left eye in images is taken as an
example. The green boxes indicate successful cases, and red
ones reveal the failure cases that cannot fully cover the eye.
The experiment is conducted under the same face and eye

center localization results predicted by InsightFace [17] for a
fair comparison.

adaptive eye region attention map is generated via a learnable
attention generator followed by a Sigmoid normalization. We
take the whole face image as the input of the attention
generator in order to make it better aware of the global face
context to facilitate robustness. The resolution of the output
attention map is aligned with the input face, and the portion
that aligns with the previously extracted coarse eye region
will be multiplied with this coarse eye region pixel-wisely to
reweight its information. The attention-weighted coarse eye
region will be used for the subsequent feature learning. The
attention generator will be jointly optimized with eyeblink
feature learning to seek optimal performance.

It is worth noting that, imposing informative attention to
coarse eye region holds two essential advantages. First, it can
refine eyeblink feature learning to facilitate the fine repre-
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Fig. 6: The intuitive example of eyelid’s intrinsic motion
across eye center during eyeblink’s occurrence.

sentative power via resisting background effect. Meanwhile,
the attention map generated with global face context (instead
of local coarse eye region) is insensitive to the unreliable
eye center localization for stable attention output. This leads
to more robust “in the wild” eyeblink feature extraction.
Technically, any encoder-decoder liked network architecture
for dense prediction can be used as the attention generator as
long as the output of the decoder is a heatmap. Here we use
cascaded pyramid network (CPN) [37] that is originally used
for human pose estimation as our attention generator.

To boost the adaptive ability of the attention generator, we
propose to introduce eye center focus constraints (ECFC) on
the generated attention map. That is, the eye center is supposed
to be of high attention value. This takes 2 main advantages.
First, it enables the attention map to also play the role of eye
center heatmap under facial landmark estimation framework,
to ensure localization robustness. Secondly, it forces strong
attention value to generally distribute around central eye
region tightly without any shape supervision (e.g., ground-
truth heatmap with Gaussian distribution [37]–[39]), which
essentially helps to better capture eyelid’s intrinsic motion
across eye center when eyeblink happens as shown in Fig. 6.
We can see that, eye center region indeed involves rich eyelid’s
motion information for effective eyeblink characterization.
Thus, it should be focused on for feature extraction. To
this end, the raw attention map H(p) is first normalized via
softmax operation as

−→
H (p) =

exp (β ∗H (p))∑
p′∈Ω exp (β ∗H (p′))

, (1)

where p and p′ indicate pixel position; Ω is the pixel set within
H (p), and β is a scaling hyperparameter. Then, the centroid
of the normalized attention map is calculated as

pc =
∑
p∈Ω

−→
H (p) ∗ p, (2)

with the constraint that forces pc to be close to the eye center
in the spirit of eye center localization via minimizing

Lec =
1

2
∥pc − p∗ec∥

2
2 , (3)

where p∗ec denotes eye center’s ground-truth position; ∥·∥2
indicates L2 norm. Such a loss formulation is similar to a kind
of centroid supervision by integral regression operation [40],
in some heatmap-based facial landmark localization [41] or
pose estimation methods [40], [42]. By this, we enable the
attention map to also play the role of eye center probability
map under landmark localization framework, in the spirit of
eye localization. Meanwhile, pc is also required to be of high
attention via minimizing

Latt = 1− Sigmoid (H (pc)) , (4)

Face image Without ECFC With ECFC

Face image Without ECFC With ECFC

Poor 
illumination 

Occlusion

ECFC – eye center focus constraints

0 1

Fig. 7: The effect of eye center focus constraints towards
informative eye region attention map generation under poor
illumination and occlusion conditions. The red box indicates

the pre-acquired local coarse eye region.

where Sigmoid (·) is Sigmoid function. Since Eqn. 2 can
be regarded as soft-argmax operation [41]–[43] which can be
closely equal to argmax with a large β value (i.e., 100 in our
implementation), Eqn. 4 can be approximated as

Latt = 1−max (Sigmoid (H (p))) . (5)

Eqn. 3 and 5 generally lead the eye center to be of the maxi-
mum attention value of high magnitude. This actually reveals
eye center focus constraints towards eyeblink characterization.

Some examples for demonstrating the effect of our proposed
eye center focus constraints (ECFC) towards informative eye
region attention generation are shown in Fig. 7, under the
challenging conditions of poor illumination and occlusion. It
can be clearly observed that, the introduction of eye center
focus constraints indeed helps the attention map to focus
more on the informative eye region accurately and stably, with
effective background resistance. Accordingly, eye’s fine status
information can be well captured for eyeblink characterization.

C. Eyelid’s Intrinsic Motion-aware Feature Learning

After being multiplied with the Sigmoid normalized at-
tention map (i.e., Sigmoid (H (p)) ∈ (0, 1)), the processed
coarse eye region is sent into a shallow CNN model to learn
the frame-wise appearance and motion features jointly for
eyeblink characterization, which is leveraged by CNN’s strong
visual pattern fitting capacity and high running efficiency due
to the shallow network structure. Specifically, the appearance
feature At of the t-th frame is acquired via conducting global
max-pooling on the last convolutional layer. For simplicity,
the motion feature Mt is calculated as the appearance feature
difference between 2 consecutive frames by

Mt = At −At−1, t ∈ [2, T ] , (6)

where T is the sample frame length. Then, for each frame
(except the first one) its 2-stream appearance-motion feature
It will be the concatenation of At and Mt as It = [At,Mt].
The extracted frame-wise feature will be sent to a temproal
pooling module (e.g., LSTM [1], [44] in our implementation)
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Fig. 8: The examples of non-eyeblink motion under
unconstrained in-the-wild conditions.

for temporal aggregation. Finally, a classifier (e.g., a fully-
connected layer in our implementation) is used to make final
eyeblink verification.

Since eyeblink can be essentially characterized via eyelid’s
intrinsic motion (i.e., approaching and departure between the
upper and lower eyelid) as in Fig. 6, we propose that eyeblink
feature learning should be aware of eyelid’s intrinsic motion.
This helps to better capture eyeblink’s representative clue for
enhancing discriminative power and generality. Meanwhile
concerning non-eyeblink motion due to the unexpected human-
camera movement, illumination change and face pose variation
under unconstrained “in the wild” conditions as shown in
Fig. 8, non-eyeblink motion insensitivity should also be met to
make feature extractor focus more on eyelid’s intrinsic motion
for effective eyeblink characterization.

For eyelid’s intrinsic motion awareness, we propose the
constraint at feature-level. That is, the inter-frame feature
divergence within eyeblink samples should be greater than
non-eyeblink ones. Specifically, suppose there are N1 eyeblink
and N2 non-eyeblink samples in a mini-batch during training,
this is acquired by minimizing

Lma = max

(
0,∆+

1

N2

N2∑
i=1

DO
i − 1

N1

N1∑
i=1

DB
i

)
, (7)

where ∆ is the expected margin between DB
i and DO

i . DB
i

and DO
i indicate the inter-frame feature divergence of certain

eyeblink and non-eyeblink sample given by

Didx
i =

1

T − 2

T∑
t=3

∥It − It−1∥22, idx ∈ {B,O} . (8)

Then towards non-eyeblink motion insensitivity, it is acquired
by imposing the constraint that forces the inter-frame feature
divergence within non-eyeblink samples to be as small as
possible, which is achieved by minimizing

Lni =
1

N2

N2∑
i=1

DO
i . (9)

Accordingly, the frame-wise eyeblink feature distribution
within the non-eyeblink samples is asked to be uniform to
resist the non-eyeblink motion information.

IV. SUPERVISE EYEBLINK FEATURE LEARNING WITH SOFT
SAMPLE LABEL FOR ANTI-AMBIGUITY

Towards effective eyeblink feature learning, we find that
one essential challenge is the potential high ambiguity be-
tween the eyeblink and non-eyeblink samples. Specifically,
the eyeblink and non-eyeblink procedure may share a very

Eyeblink sample

Non-eyeblink sample

Hard label: 𝟏𝟏𝟎𝟎 Soft label: 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖
𝟎𝟎.𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖

Hard label: 𝟎𝟎𝟏𝟏 Soft label: 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟎𝟎
𝟎𝟎.𝟖𝟖𝟏𝟏𝟖𝟖𝟎𝟎

Fig. 9: The intuitive examples of ambiguous eyeblink and
non-eyeblink samples within HUST-LEBW. Particularly, the

positive eyeblink sample is of hard label [0, 1]T and soft
label [0.2850, 0.7150]T generated via self-knowledge
distillation. And the hard and soft sample label of the
non-eyeblink sample is [1, 0]

T and [0.8275, 0.1725]
T .

Teacher Hard labelInput

Pre-trained 
teacher

Input

Student Hard label

Soft label

Stage1:

Stage2:

Self-knowledge 
distillation

Same 
structure

Fig. 10: The main idea of self-knowledge distillation for
anti-ambiguity.

similar appearance (as shown in Fig. 9), even humans can not
distinguish them confidently. Such a phenomenon may be due
to the subtle eye status variation during eyeblink caused by
personalized factors (e.g., small eyes or no complete closure
of the eyelids during eyeblink). In those cases, it would be
better to say that to what extent (probability) a sample is
an eyeblink/non-eyeblink, rather than judge it by a “hard
classification label” (i.e., 0 or 1). Thus, using the original hard
sample labels (i.e., “1” for eyeblink, and “0” for non-eyeblink)
as the supervision to conduct feature learning rigidly may
confuse the classifier. As a consequence, eyeblink feature’s
fine-grained representative ability and generality cannot be
well ensured. To address this, we propose to use the prior soft
sample labels valued in [0, 1] that indicates the probability of
a sample being an eyeblink or a non-eyeblink to supervise
feature learning, instead of using the hard ones (i.e., 0 or
1). In our opinion, this can facilitate the feature extractor to
better capture eyelid’s fine status variation during eyeblink
with more reasonable supervision. We formulate this under
a self-knowledge distillation framework [18]. The main idea
is to transfer the prior knowledge about the similarity between
classes within a pre-trained teacher network to a student
network, to enable the student network to better handle sample
ambiguity from the more reasonable supervision generated
from the teacher as shown in Fig. 10.

Particularly, our whole network is trained with 2 stages.
First, it is pre-trained as the teacher network via minimizing

LT = Lce + λ1Le, (10)
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where Lce is the cross-entropy loss and

Le = Latt + λ2Lec + λ3Lma + λ4Lni, (11)

where Latt and Lec are eye center focus constraints (ECFC)
illustrated in Sec. III-B. Lma and Lni are the constraints of
eyelid’s intrinsic motion awareness and non-eyeblink motion
insensitivity that are introduced in Sec. III-C. λi, i ∈ [1, 4] are
the hyperparameters to balance the effect of different losses.

With the soft sample labels generated via pre-trained teacher
network as in Fig. 9, in the second phase a student network
of the same structure will be then trained under the guidance
of the teacher network using the loss function given by

LS = Lkd + λ1Le, (12)

where Lkd is the self-knowledge distillation loss that leads the
student to mimic its teacher’s predicted soft labels as well as
the original ground-truth hard labels as

Lkd = (1− α)Lce (hgt, ps) + αDkl (p̃t, p̃s) , (13)

where hgt is sample’s ground-truth hard label; ps indicates the
student’s prediction; p̃t and p̃s denote the softened probability
distribution [18] of the prediction yielded by the teacher
and student network respectively; Dkl (p̃t, p̃s) represents KL-
divergence between p̃t and p̃s; and α is the hyperparameter to
balance the effect of Dkl (p̃t, p̃s) and Lce (hgt, ps). After the
second phase of training, the acquired student network will be
finally used for eyeblink detection.

V. IMPLEMENTATION DETAILS

The sample frames are resized to 256×256 for InsightFace.
The architecture of the shallow CNN is: “Conv2D(5,3,24)
- Conv2D(3,2,48) - Conv2D(3,2,80)”, where Conv2D(k,s,c)
denotes a 2D convolution layer with kernel size k, stride size
s and c output channels. Each layer is followed by a batch
normalization [45], a ReLU activation [46] and a maxpooling
layer with a down-sampling ratio of 0.5. ∆ in Eqn. 7 is set
to 0.1. λ1, λ2, λ3, and λ4 in Eqn. 10 and 11 are set to 0.2,
0.0005, 0.5 and 0.25. α in Eqn. 13 is set to 0.1. Adam [47]
is used as optimizer with a batch size of 8. The learning rate
of the attention generation network begins with 5e−5, rises to
3e−4 after 6 epochs, then decays with a rate of 0.8 every 8
epochs. The learning rate for the other parts of the network
is set as 4 times as that for the attention generation network.
The whole training process terminates at 100 epochs.

VI. EXPERIMENTS

A. Experimental Setup

The experiments are conducted on one “in the wild” dataset
and one combined constrained dataset, to verify the effec-
tiveness and generalization ability of our proposition. First,
we conduct experiments on the HUST-LEBW dataset [1]
to analyze the eyeblink detection capacity of the proposed
method towards unconstrained in-the-wild cases (Sec. VI-B).
As different methods adopt different face and landmark de-
tectors, to eliminate such differences for a fairer comparison,
we further make a comparison with the representative methods

(a) ZJU [4] (b) Eyeblink8 [7]

(c) Talking Face [19] (d) RLDD [5]

Fig. 11: The live eyeblink snapshots from the individual
datasets within the Constrained+ dataset.

under the same face and landmark detection results (a unified
face analysis toolbox InsightFace [17] is used for face and
facial landmark detection). To further study the eyeblink detec-
tion capacity towards constrained cases, experiments are also
conducted on a combined constrained dataset Constrained+
(Sec. VI-C). Moreover, we also evaluate the challenging cross-
dataset setting (model is trained on Constrained+ and directly
tested on HUST-LEBW) in Sec. VI-D. To explore the ability
for eyeblink detection in untrimmed videos, we also test
the proposed eyeblink detection method in untrimmed videos
(Sec. VI-E). The real-time inference capacity of our eyeblink
detection approach is also illustrated in Sec. VI-F. Then, the
ablation studies of the proposed component are conducted
in Sec. VI-G, followed by a parameter setting analysis in
Sec. VI-H. Finally, a further discussion including attention
visualization (Sec. VI-I) and case studies of success and failure
(Sec. VI-J) is illustrated to reveal a deeper insight of the
proposed method. We will briefly introduce the datasets and
evaluation metrics used as follows.

HUST-LEBW [1]. It is the first eyeblink in the wild
dataset. Being different from the other datasets [4], [5], [7],
[48], samples within HUST-LEBW are captured from the
unconstrained movies instead of from the volunteers under
the constrained indoor conditions. It involves 673 trimmed
eyeblink samples (i.e., 381 positives, and 292 negatives) with
448 samples in the training set and 225 samples in the test set.
It also provides a sub-set of 90 untrimmed videos for testing
purposes. Some live eyeblink snapshots from HUST-LEBW
are shown in Fig. 2, which reveals the critical challenges. More
details respecting HUST-LEBW can be found in [1].

Constrained+. To verify the generalization ability of our
proposition towards the constrained cases. We combine 4 exist-
ing constrained eyeblink datasets (i.e., ZJU [4], Eyeblink8 [7],
Talking Face [19] and RLDD [5]) to form the Constrained+
and evaluate our method on it. Some live eyeblink snapshots
from the individual datasets within Constrained+ are shown
in Fig. 11. Specifically, we adopt an off-the-shelf face parsing
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TABLE I: Performance comparison among the different
methods on the HUST-LEBW dataset. * indicates that the

method is trained on a larger dataset mEBAL [8].

Method Eye Recall Precision F1-score

Chau and Betke [49] Left 1.64 100.00 3.23
Right 0.00 0.00 0.00

Morris et al. [21] Left 4.10 71.43 7.75
Right 2.38 75.00 4.62

Drutarovsky and Fogelton [7] Left 5.74 41.18 10.07
Right 3.17 30.77 5.76

Tabrizi and Zoroofi [50] Both 7.14 45.00 12.33

Soukupová and Cech [6] Left 36.07 64.71 46.32
Right 30.16 57.58 39.58

Hu et al. [1] Left 54.10 89.19 67.35
Right 44.44 76.17 56.28

Daza et al.* [8] Left 96.03 60.80 74.46
Right 79.50 73.48 76.37

Daza et al.* [9] Both 93.39 75.33 83.39

Ours Left 91.80 89.60 90.69
Right 91.27 92.74 92.00

TABLE II: Performance comparison among the proposed
method and the other methods using InsightFace [17] for

face parsing as ours on the HUST-LEBW dataset.

Method Eye Recall Precision F1-score

Soukupová and Cech [6] Left 36.07 64.71 46.32
Right 30.16 57.58 39.58

Soukupová and Cech [6] + InsightFace [17] Left 40.98 81.97 54.64
Right 40.48 87.93 55.43

Hu et al. [1] Left 54.10 89.19 67.35
Right 44.44 76.17 56.28

Hu et al. [1] + InsightFace [17] Left 68.85 73.04 70.89
Right 76.98 79.51 78.23

Ours Left 91.80 89.60 90.69
Right 91.27 92.74 92.00

engine to automatically label human faces as well as facial
landmarks. The frames with wrong prediction results will be
ignored. The videos will be split into trimmed clips as in [1].
As the number of non-eyeblink clips is much more than the
number of eyeblinks, we apply random sampling to balance
the amount of the eyeblink and non-blink samples. Overall,
the dataset contains 4,935 samples (i.e., 2,435 positives and
2,500 negatives). Particularly the training set involves 2,235
positives and 2,300 negatives, and the test set contains 200
positives and 200 negatives.

Evaluation metric. Following [1], Recall, Precision and F1-
score are used to evaluate eyeblink detection on the trimmed
samples. Meanwhile, average precision (AP) is applied to the
untrimmed samples.

B. Comparison with State-of-the-art Methods on Eyeblink
Detection in the Wild

HUST-LEBW: The proposed eyeblink detection in the wild
approach is first compared with the state-of-the-art meth-
ods [1], [6]–[9], [21], [49], [50] towards the trimmed samples.
The results are listed in Table I. It can be observed that:

TABLE III: Performance comparison among the different
methods on the Constrained+ dataset.

Method Eye Recall Precision F1-score

Soukupová and Cech [6] + InsightFace [17] Left 97.00 99.49 98.23
Right 97.50 99.49 98.48

Hu et al. [1] + InsightFace [17] Left 92.00 97.35 94.60
Right 98.00 99.49 98.74

Ours Left 99.50 100.00 99.75
Right 99.50 100.00 99.75

• For both left and right eyes, our method significantly
outperforms the others by a large margin with 7% at least on
F1-score. Note that the most competitive method [9] is trained
on a larger dataset mEBAL [8]. This essentially verifies the
superiority of our proposition towards eyeblink detection in
the wild;
• The performance of the other methods is actually not

satisfactory enough (i.e., F1-score is less than 90%). This
indeed reveals the challenges of eyeblink detection in the wild.

Comparison using the same state-of-the-art face parsing
engine: For a more fair comparison, the proposed approach
is also compared with others equipped with the state-of-the-
art face engine (i.e., InsightFace [17]) as ours on HUST-
LEBW. As the methods [8], [9] require frame-level annotations
to be trained, they can not be trained on the HUST-LEBW
dataset for a fair comparison. Thus, we choose to compare
with the other 2 representative methods (i.e., one region-
based method [1] and one landmark-based method [6]) in
this experiment. The results are given in Table II. It can be
summarized that:
• When using the same face parsing engine (i.e., In-

sightFace), our proposition still significantly outperforms the
others. This indeed verifies the superiority of the proposed
eyeblink feature extraction method;
• InsightFace facilitates the performance of previous meth-

ods [1], [6]. This verifies that, effective face parsing is actually
an essential issue towards “in the wild” scenarios.

C. Comparison with State-of-the-art Methods on Eyeblink
Detection under Constrained Conditions

Constrained+: Our method is also compared with [1] and
[6]. We also equip them with InsightFace for face parsing to
conduct a fair comparison. The results are given in Table III.
We can see that:
• The proposed approach still outperforms others under con-

strained conditions, with an indeed high F1-score of 99.75%.
This demonstrates the strong generalization capacity of our
proposition for the different application scenarios;
• Both 2 methods for comparison can achieve promising

results here. While compared with the results in Table II,
their performance drop from Constrained+ to HUST-LEBW
is huge (i.e., with over 20% F1-score drop). In contrast, this
is not serious when using our method (i.e., about 9% F1-score
drop). This first reveals the greater challenges of eyeblink
detection in the wild over the constrained scenarios. And,
this somewhat verifies that the proposed method has captured
eyeblink’s intrinsic features.
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TABLE IV: Performance comparison among different
methods under cross-dataset test setting from Constrained+

to HUST-LEBW.

Method Eye Recall Precision F1-score

Soukupová and Cech [6] + InsightFace [17] Left 40.16 80.33 53.55
Right 44.44 77.77 56.57

Hu et al. [1] + InsightFace [17] Left 70.49 70.49 70.49
Right 70.63 70.08 70.36

Ours Left 91.80 80.58 85.82
Right 94.44 76.77 84.69

TABLE V: Performance comparison among the different
methods on untrimmed eyeblink samples within

HUST-LEBW dataset.

Method Eye AP

Hu et al. [1] Left 29.42
Right 31.85

Ours Left 76.52
Right 80.47

D. Comparison with Cross-dataset Test Setting

To verify the generalization capacity of our proposition, it
is also compared with [1] and [6] with a cross-dataset test.
That is, they are trained on Constrained+ but test on HUST-
LEBW. For a fair comparison, [1] and [6] are also equipped
with InsightFace as ours for face parsing. The results are given
in Table IV. It can be summarized that:

• For this challenging test setting, our approach still signif-
icantly outperforms the others with a high F1-score of about
85%. This indeed demonstrates the strong generality of the
proposed region-based eyeblink feature extraction approach.
That is, our proposition has captured eyeblink’s intrinsic
feature disregarding the application conditions;

• Landmark-based method [6] is inferior to region-based
[1] and ours. This somewhat reveals the fact that the region-
based paradigm is of stronger generalization capacity than the
landmark-based counterpart.

E. Evaluation on Untrimmed Videos

To explore the eyeblink detection in the wild ability
in untrimmed videos, our approach is also evaluated on
untrimmed scenarios following the main technical paradigm
and evaluation metrics in [1]. Specifically, the model is
trained on the trimmed samples in HUST-LEBW, and directly
inference on a sub-set of HUST-LEBW that consists of 90
untrimmed videos in a sliding window manner, for test only.
The results are listed in Table V. It can be seen that:

• Our method still outperforms the existing method [1] by a
large margin (i.e., at least over 47% on AP). This demonstrates
the superiority of our method towards untrimmed cases that is
closer to the practical applications;

• Towards the more challenging untrimmed case, the perfor-
mance of our method is still not satisfactory enough (i.e., AP
is only around 80%). One potential reason is the different char-
acteristics between trimmed and untrimmed videos. Existing
efforts including ours mainly focus on trimmed cases, so it is

TABLE VI: The average running time per frame of the
proposed eyeblink detection method.

Procedure Time (ms)

Face detection 10.33
Facial landmark detection 4.67

Attention generation 6.68
Feature extraction & eyeblink verification 2.20

Total 23.88

TABLE VII: Ablation studies on the proposed informative
eye region attention and the eye center focus constraints

(ECFC) on the HUST-LEBW dataset.

Eye Attention ECFC Trimmed Untrimmed
Recall Precision F1-score AP

Left
75.41 79.31 77.31 45.03

✓ 85.25 85.95 85.60 70.88
✓ ✓ 89.34 86.51 87.90 75.73

Right
73.02 85.98 78.97 39.69

✓ 83.33 85.37 84.34 76.38
✓ ✓ 88.10 87.40 87.75 77.64

Average
74.22 82.65 78.14 42.36

✓ 84.29 85.66 84.97 73.63
✓ ✓ 88.72 86.96 87.83 76.69

hard to get a precise eyeblink boundary by naively employing a
rigid temporal sliding window. How to well address untrimmed
cases is what we concern in future works.

F. Real-time Running Capacity

The average running time per frame of our method is listed
in Table VI, using a single NVIDIA 2080Ti GPU. It can be
seen that the running speed of our approach is about 23.88ms
per frame (i.e., around 41 FPS). Essentially, it meets the
real-time running requirement. It is worth noting that, face
detection is of the most time consumption. If it is replaced
with the more efficient ones, the running efficiency of our
method can be further enhanced.

G. Ablation Studies

In this session, we analyze the roles played by the proposed
components by gradually adding them and evaluating their
performance on the HUST-LEBW dataset in both trimmed and
untrimmed settings.

Effectiveness of informative eye region attention: The
results are listed in Table VII. To resist the effect of the
other propositions, the baseline network here will be trained
only using cross-entropy loss without any other proposed
components. We gradually add the attention generator and the
eye center focus constraints (ECFC) to the baseline to analyze
their effects. From Table VII we can summarize that:
• Informative eye region attention plays an important role

in our coarse-to-fine eye region discovery procedure. It can
facilitate performance remarkably (i.e., 6.83% F1-score on
average) towards eyeblink detection in the wild in trimmed
setting, as the deformable attention can adaptively capture
the fine region with rich eyelid movement. Moreover, the
performance gain in untrimmed setting is more notable (i.e.,
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TABLE VIII: Ablation studies on the constraints for eyelid
motion-aware feature learning on the HUST-LEBW dataset.

Eye Lni Lma
Trimmed Untrimmed

Recall Precision F1-score AP

Left

89.34 86.51 87.90 75.73
✓ 88.52 88.52 88.52 71.83

✓ 90.16 88.00 89.07 64.06
✓ ✓ 90.98 89.51 90.24 76.15

Right

88.10 87.40 87.75 77.64
✓ 89.68 88.28 88.98 80.27

✓ 89.68 90.40 90.04 80.55
✓ ✓ 91.27 90.55 90.90 80.55

Average

88.72 86.96 87.83 76.69
✓ 89.10 88.40 88.75 76.05

✓ 89.92 89.20 89.56 72.31
✓ ✓ 91.13 90.03 90.57 78.35

TABLE IX: Performance comparison of our method with
and without prior soft supervision on HUST-LEBW dataset.

Eye Soft supervision Trimmed Untrimmed
Recall Precision F1-score AP

Left 90.98 89.51 90.24 76.15
✓ 91.80 89.60 90.69 76.52

Right 91.27 90.55 90.90 80.55
✓ 91.27 92.74 92.00 80.47

Average 91.13 90.03 90.57 78.35
✓ 91.54 91.17 91.35 78.50

31.27% AP on average), which demonstrates that robust and
accurate fine eye region capture is more crucial for untrimmed
scenarios;

• The eye center focus constraints (ECFC) illustrated in
Sec. III-B further boost the performance (i.e., 2.86% F1
score in trimmed scenarios and 3.06% F1 score in untrimmed
scenarios on average), as such explicit constraints can enhance
the focusing ability of the generated attention. The qualitative
visualization analysis can be found in Fig. 7.

Effectiveness of constraints for eyelid motion-aware
feature learning: We gradually add new components on
the previously obtained model in Table VII to study the
effect of the proposed constraints for eyelid’s intrinsic motion
awareness (Lma) and non-eyeblink motion insensitivity (Lni)
during feature learning. The results are listed in Table VIII. It
can be observed that:

• Applying either of them can boost the performance by a
noticeable margin (i.e., at least 0.5% on F1-score) in trimmed
scenarios, which verifies the effectiveness of the proposed
constraints towards eyeblink detection in the wild;

• Actually, using either constraint alone cannot achieve
the optimal performance, as it may lead to potential feature
degradation issues. Specifically, solely employing the non-
eyeblink motion insensitivity constraint (i.e., Lni) may also re-
duce the extracted inter-frame feature differences for eyeblink
samples, which is unfavorable for the characterization of eyelid
movements. However, by adding the eyelid’s intrinsic motion
aware constraint (i.e., Lma) at the same time, the feature
extractor can remain sensitive to eyelid movements while
being insensitive to non-eyeblink motions. On the other hand,
if only eyelid’s intrinsic motion aware constraint (i.e., Lma) is
applied, it might cause the feature extractor also be more sensi-

TABLE X: Performance comparison with different λ values
on the HUST-LEBW dataset.

λi value Left eye Right eye
Recall Precision F1-score Recall Precision F1-score

λ1

0 85.25 85.95 85.60 83.33 85.37 84.34
0.1 90.16 86.61 88.35 90.48 89.76 90.12
0.2 90.98 89.51 90.24 91.27 90.55 90.90
0.3 93.44 87.02 90.12 88.89 91.06 89.96

λ2

0 90.98 86.72 88.80 87.30 90.16 88.71
0.0001 91.80 86.82 89.24 91.27 89.15 90.20
0.0005 90.98 89.51 90.24 91.27 90.55 90.90
0.001 90.98 88.80 89.88 90.48 88.37 89.41

λ3

0 88.52 88.52 88.52 89.68 88.28 88.98
0.1 90.98 88.10 89.52 92.06 88.55 90.27
0.5 90.98 89.51 90.24 91.27 90.55 90.90
1 89.34 88.62 88.98 91.27 89.84 90.55

λ4

0 90.16 88.00 89.07 89.68 90.40 90.04
0.1 91.80 88.19 89.96 91.27 89.84 90.55

0.25 90.98 89.51 90.24 91.27 90.55 90.90
0.5 90.98 88.10 89.52 90.48 89.76 90.12

TABLE XI: Performance comparison with different ∆ values
on the HUST-LEBW dataset.

Lma ∆
Left eye Right eye

Recall Precision F1-score Recall Precision F1-score

× - 88.52 88.52 88.52 89.68 88.28 88.98

✓
0 89.34 88.62 88.98 88.89 90.32 89.60

0.1 90.98 89.51 90.24 91.27 90.55 90.90
0.2 92.62 87.60 90.04 88.89 89.60 89.24

tive on the non-eyeblink motions such as illumination and head
pose change that are common in unconstrained in-the-wild
scenarios. Further adding non-eyeblink motion insensitivity
constraint can let the feature extractor be insensitive to those
non-eyeblink motions here. Such a feature degradation issue
is more notable for untrimmed setting (i.e., only using either
constraint alone here will even decrease the performance).
The experimental results show that when applying these two
constraints together, the performance can be boosted by a
large margin (i.e., 2.74% F1-score in trimmed setting and
1.66% AP in untrimmed setting on average). This essentially
demonstrates the effectiveness of these constraints towards
discriminative and robust eyeblink feature learning. The results
also reveal the fact that eyelid’s intrinsic motion is indeed one
essential factor for eyeblink characterization in the wild.

Effectiveness of prior soft sample label supervision: The
performance comparison of our method with and without it
on the HUST-LEBW dataset is listed in Table IX. Actually,
the self-generated prior soft label can give a more reasonable
supervision and thus boost the performance consistently.

H. Parameter Setting Analysis

Analysis on λ: Here we investigate the settings of the
parameters λi in Eqn. 10 and 11. The performance comparison
among different λi values on the HUST-LEBW dataset is given
in Tab X. Note that for the experiment within each λi, the
other λj,j ̸=i are set to its optimal value and self-knowledge
distillation is not included. It can be observed that:
• When λi>0, the performance improves consistently, es-

pecially for λ1 that controls the overall effect of the proposed
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Eyeblink samples Non-Eyeblink samples

Fig. 12: Visual analysis on informative eye region attention.

Bad illumination Bad illumination & occlusion

Motion blur Eye-closed all the time

True positive eyeblink samples

True negative non-eyeblink samples

(a) Successful cases

Face detection failure

Make-up on eyes

Eye region loc. failure Attention generation failure

Eye open Eye closeEye close
False negative eyeblink sample False positive non-eyeblink sample

(b) Failure cases

Fig. 13: Case studies of success and failure.

constraints, which essentially demonstrates the effectiveness
of the proposed constraints.

• The performance improvements are stable with different
λi values as long as the model can be trained evenly. Generally,
the optimal values are 0.2, 0.0005, 0.5, and 0.25 for λ1, λ2,
λ3, and λ4 respectively.

Analysis on ∆: As in Eqn. 7, ∆ is the expected margin
between DB

i and DO
i . The performance comparison among

different ∆ values on the HUST-LEBW dataset is given in
Tab XI. It can be observed that when ∆ ≥ 0, the performance
can be enhanced, which fits with our motivation that letting
the inter-frame feature divergence within eyeblink samples
be greater than non-eyeblink ones is beneficial for extracting
eyelid’s intrinsic motion and thus boosts the performance.
Generally, 0.1 is optimal for ∆.

I. Visual Analysis on Informative Attention

We visualize the generated attention within our network
in Fig. 12 to analyze the effect of informative eye region

attention towards eyeblink characterization. It can be seen
that within the eyeblink procedure, the attention can well
capture eyelid’s fine intrinsic motion for subsequent feature
learning. For the non-eyeblink samples, the attention focuses
on eye’s open state consistently. Overall, the informative eye
regions with rich eyelid movement have been captured and the
effect of the background has been resisted remarkably. This
intuitively verifies that the proposed approach helps to capture
informative eye regions to better characterize eyelid motion.

J. Case Studies of Success and Failure

Here we further study the success and failure cases of
the proposed method. From Fig. 13, we can see that the
proposed method can work robustly under some challenging
scenarios with bad illumination, severe occlusion, motion blur,
etc. Notably, it can differentiate between eyeblink and eye-
close, which is hard to meet by some frame-based methods [8],
[9] that regard the eye-closed as eyeblink.

Nevertheless, it can also be observed that our method will
fail to work in some cases. Firstly, it can not work if the face
can not be detected by the face detector. Secondly, although
the proposed coarse-to-fine informative eye region discovery
approach alleviates the dependence of eyeblink detection on
eye localization by landmark detector, it still can not handle the
cases where the detected eye is far from its actual position,
as the extracted coarse eye region can not cover the eye at
this circumstance. Thirdly, the attention may fail to work due
to serious occlusion on eyes. Besides, our method may not
perform well when the eyes are heavily made up. Although
it can distinguish between eyeblink and eye-closed, it may
mistakenly recognize an “eye open, eye close, eye close”
procedure as an eyeblink. We speculate that this is because
there is a lack of samples of such rare non-eyeblink processes
in the training set.

VII. CONCLUSIONS

Towards the challenging research task of real-time eye-
blink detection in the wild, a novel eyelid’s intrinsic motion-
aware feature learning approach is proposed. Within it, the
combination of large coarse eye region and informative eye
region attention facilitates robust extraction of discriminative
eyeblink features. The proposed constraints on attention gen-
eration and feature learning help to better capture eyeblink’s
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intrinsic feature. We also observe the ambiguity issue between
eyeblink and non-eyeblink samples, and use self-generated soft
supervision to address it. Experiments verify the superiority of
our propositions. In the future, we will pay more attention to
addressing the untrimmed cases and facilitating robustness.
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